Reranker NDCG
Normalized Discounted Cumulative Gain for ranking metrics using graded relevance scores.
- Inputs: list of lists of retrieved items, list of dicts mapping item → relevance score
- Returns: NDCG score (float)
Example
from vero.metrics import RerankerNDCG
#example inputs
#rr is the reranked results from the retriever
#ranks is the relevance scores for the items retrieved by the retriever
rr = [[1,2,3,5,6],[1,2,3,5,6]]
ranks = [{2:2, 3:2},{2:2, 3:2, 6:1}]
rndcg = RerankerNDCG(rr, ranks)
print(rndcg.evaluate())
Output
0.89